Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.

Identifieur interne : 001148 ( Main/Exploration ); précédent : 001147; suivant : 001149

Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.

Auteurs : E. Mössner [Suisse] ; M. Huber-Wunderlich ; R. Glockshuber

Source :

RBID : pubmed:9605329

Descripteurs français

English descriptors

Abstract

Thiol/disulfide oxidoreductases like thioredoxin, glutaredoxin, DsbA, or protein disulfide isomerase (PDI) share the thioredoxin fold and a catalytic disulfide bond with the sequence Cys-Xaa-Xaa-Cys (Xaa corresponds to any amino acid). Despite their structural similarities, the enzymes have very different redox properties, which is reflected by a 100,000-fold difference in the equilibrium constant (K(eq)) with glutathione between the most oxidizing member, DsbA, and the most reducing member, thioredoxin. Here we present a systematic study on a series of variants of thioredoxin from Escherichia coli, in which the Xaa-Xaa dipeptide was exchanged by that of glutaredoxin, PDI, and DsbA. Like the corresponding natural enzymes, all thioredoxin variants proved to be stronger oxidants than the wild-type, with the order wild-type < PDI-type < DsbA-type < glutaredoxin-type. The most oxidizing, glutaredoxin-like variant has a 420-fold decreased value of K(eq), corresponding to an increase in redox potential by 75 mV. While oxidized wild-type thioredoxin is more stable than the reduced form (delta deltaG(ox/red) = 16.9 kJ/mol), both redox forms have almost the same stability in the variants. The pH-dependence of the reactivity with the alkylating agent iodoacetamide proved to be the best method to determine the pKa value of thioredoxin's nucleophilic active-site thiol (Cys32). A pKa of 7.1 was measured for Cys32 in the reduced wild-type. All variants showed a lowered pKa of Cys32, with the lowest value of 5.9 for the glutaredoxin-like variant. A correlation of redox potential and the Cys32 pKa value could be established on a quantitative level. However, the predicted correlation between the measured delta deltaG(ox/red) values and Cys32 pKa values was only qualitative.

DOI: 10.1002/pro.5560070519
PubMed: 9605329
PubMed Central: PMC2144011


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.</title>
<author>
<name sortKey="Mossner, E" sort="Mossner, E" uniqKey="Mossner E" first="E" last="Mössner">E. Mössner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huber Wunderlich, M" sort="Huber Wunderlich, M" uniqKey="Huber Wunderlich M" first="M" last="Huber-Wunderlich">M. Huber-Wunderlich</name>
</author>
<author>
<name sortKey="Glockshuber, R" sort="Glockshuber, R" uniqKey="Glockshuber R" first="R" last="Glockshuber">R. Glockshuber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:9605329</idno>
<idno type="pmid">9605329</idno>
<idno type="pmc">PMC2144011</idno>
<idno type="doi">10.1002/pro.5560070519</idno>
<idno type="wicri:Area/Main/Corpus">001145</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001145</idno>
<idno type="wicri:Area/Main/Curation">001145</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001145</idno>
<idno type="wicri:Area/Main/Exploration">001145</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.</title>
<author>
<name sortKey="Mossner, E" sort="Mossner, E" uniqKey="Mossner E" first="E" last="Mössner">E. Mössner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huber Wunderlich, M" sort="Huber Wunderlich, M" uniqKey="Huber Wunderlich M" first="M" last="Huber-Wunderlich">M. Huber-Wunderlich</name>
</author>
<author>
<name sortKey="Glockshuber, R" sort="Glockshuber, R" uniqKey="Glockshuber R" first="R" last="Glockshuber">R. Glockshuber</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="ISSN">0961-8368</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites (MeSH)</term>
<term>Circular Dichroism (MeSH)</term>
<term>Cysteine (metabolism)</term>
<term>Escherichia coli (metabolism)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Disulfide Reductase (Glutathione) (MeSH)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (isolation & purification)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Spectrophotometry, Ultraviolet (MeSH)</term>
<term>Thermodynamics (MeSH)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (isolation & purification)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cystéine (métabolisme)</term>
<term>Dichroïsme circulaire (MeSH)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protein-disulfide reductase (glutathione) (MeSH)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (isolement et purification)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
<term>Spectrophotométrie UV (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (isolement et purification)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Recombinant Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Recombinant Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines recombinantes</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Protéines recombinantes</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cystéine</term>
<term>Escherichia coli</term>
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Circular Dichroism</term>
<term>Glutaredoxins</term>
<term>Oxidation-Reduction</term>
<term>Protein Disulfide Reductase (Glutathione)</term>
<term>Spectrophotometry, Ultraviolet</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dichroïsme circulaire</term>
<term>Glutarédoxines</term>
<term>Oxydoréduction</term>
<term>Protein-disulfide reductase (glutathione)</term>
<term>Sites de fixation</term>
<term>Spectrophotométrie UV</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thiol/disulfide oxidoreductases like thioredoxin, glutaredoxin, DsbA, or protein disulfide isomerase (PDI) share the thioredoxin fold and a catalytic disulfide bond with the sequence Cys-Xaa-Xaa-Cys (Xaa corresponds to any amino acid). Despite their structural similarities, the enzymes have very different redox properties, which is reflected by a 100,000-fold difference in the equilibrium constant (K(eq)) with glutathione between the most oxidizing member, DsbA, and the most reducing member, thioredoxin. Here we present a systematic study on a series of variants of thioredoxin from Escherichia coli, in which the Xaa-Xaa dipeptide was exchanged by that of glutaredoxin, PDI, and DsbA. Like the corresponding natural enzymes, all thioredoxin variants proved to be stronger oxidants than the wild-type, with the order wild-type < PDI-type < DsbA-type < glutaredoxin-type. The most oxidizing, glutaredoxin-like variant has a 420-fold decreased value of K(eq), corresponding to an increase in redox potential by 75 mV. While oxidized wild-type thioredoxin is more stable than the reduced form (delta deltaG(ox/red) = 16.9 kJ/mol), both redox forms have almost the same stability in the variants. The pH-dependence of the reactivity with the alkylating agent iodoacetamide proved to be the best method to determine the pKa value of thioredoxin's nucleophilic active-site thiol (Cys32). A pKa of 7.1 was measured for Cys32 in the reduced wild-type. All variants showed a lowered pKa of Cys32, with the lowest value of 5.9 for the glutaredoxin-like variant. A correlation of redox potential and the Cys32 pKa value could be established on a quantitative level. However, the predicted correlation between the measured delta deltaG(ox/red) values and Cys32 pKa values was only qualitative.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9605329</PMID>
<DateCompleted>
<Year>1998</Year>
<Month>06</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0961-8368</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<Issue>5</Issue>
<PubDate>
<Year>1998</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.</ArticleTitle>
<Pagination>
<MedlinePgn>1233-44</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Thiol/disulfide oxidoreductases like thioredoxin, glutaredoxin, DsbA, or protein disulfide isomerase (PDI) share the thioredoxin fold and a catalytic disulfide bond with the sequence Cys-Xaa-Xaa-Cys (Xaa corresponds to any amino acid). Despite their structural similarities, the enzymes have very different redox properties, which is reflected by a 100,000-fold difference in the equilibrium constant (K(eq)) with glutathione between the most oxidizing member, DsbA, and the most reducing member, thioredoxin. Here we present a systematic study on a series of variants of thioredoxin from Escherichia coli, in which the Xaa-Xaa dipeptide was exchanged by that of glutaredoxin, PDI, and DsbA. Like the corresponding natural enzymes, all thioredoxin variants proved to be stronger oxidants than the wild-type, with the order wild-type < PDI-type < DsbA-type < glutaredoxin-type. The most oxidizing, glutaredoxin-like variant has a 420-fold decreased value of K(eq), corresponding to an increase in redox potential by 75 mV. While oxidized wild-type thioredoxin is more stable than the reduced form (delta deltaG(ox/red) = 16.9 kJ/mol), both redox forms have almost the same stability in the variants. The pH-dependence of the reactivity with the alkylating agent iodoacetamide proved to be the best method to determine the pKa value of thioredoxin's nucleophilic active-site thiol (Cys32). A pKa of 7.1 was measured for Cys32 in the reduced wild-type. All variants showed a lowered pKa of Cys32, with the lowest value of 5.9 for the glutaredoxin-like variant. A correlation of redox potential and the Cys32 pKa value could be established on a quantitative level. However, the predicted correlation between the measured delta deltaG(ox/red) values and Cys32 pKa values was only qualitative.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mössner</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huber-Wunderlich</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Glockshuber</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.2</RegistryNumber>
<NameOfSubstance UI="D011490">Protein Disulfide Reductase (Glutathione)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011490" MajorTopicYN="Y">Protein Disulfide Reductase (Glutathione)</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013056" MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1998</Year>
<Month>5</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1998</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1998</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9605329</ArticleId>
<ArticleId IdType="pmc">PMC2144011</ArticleId>
<ArticleId IdType="doi">10.1002/pro.5560070519</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bacteriol Rev. 1972 Dec;36(4):525-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4568763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Nov 10;255(21):10261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7000775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1986;131:266-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3773761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 May 5;189(1):113-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3537305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1987;154:367-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3323813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Oct 18;27(21):8063-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3233195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1989 Nov 1;182(2):319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2610349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Mar 5;212(1):167-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2181145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1990 Oct;282(1):110-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2221913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 25;266(15):9494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2033048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 5;266(19):12759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Apr 7;31(13):3442-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1554726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 May 18;32(19):5083-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8494885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1993 May;2(5):717-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8495194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Jun 8;32(22):5800-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8099293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1992 Mar;1(3):310-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1304339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Jul 6;32(26):6649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8329391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Sep 9;365(6442):185-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7690463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Nov 16;32(45):12251-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8218303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Feb 22;33(7):1907-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8110795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 May 17;33(19):5974-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1994 Jun 15;2(6):503-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7922028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1994 Aug;19(8):331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7940678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1994 Sep 15;2(9):853-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7812718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Mar 17;247(1):28-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7897659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Nov 19;35(46):14503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8931546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Apr 8;36(14):4061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9099998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Apr 14;406(3):249-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9136895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Aug 29;272(35):21692-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9268296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1997 Sep 22;138(6):1229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9298979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fold Des. 1998;3(3):161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9562546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1964 Jan 11;201:185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14118271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Apr 18;34(15):5075-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7536035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Jul 4;34(26):8281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7599120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 3;270(44):26178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Nov 10;253(5):799-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7473753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Dec 15;83(6):947-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1995 Oct;4(10):1998-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8535236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 May 1;315 ( Pt 3):1001-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8645136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jun 3;15(11):2659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8654363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jun 25;35(25):8342-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8679592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1996 Jun 15;4(6):735-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8805557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Zurich</li>
</region>
<settlement>
<li>Zurich</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Glockshuber, R" sort="Glockshuber, R" uniqKey="Glockshuber R" first="R" last="Glockshuber">R. Glockshuber</name>
<name sortKey="Huber Wunderlich, M" sort="Huber Wunderlich, M" uniqKey="Huber Wunderlich M" first="M" last="Huber-Wunderlich">M. Huber-Wunderlich</name>
</noCountry>
<country name="Suisse">
<region name="Canton de Zurich">
<name sortKey="Mossner, E" sort="Mossner, E" uniqKey="Mossner E" first="E" last="Mössner">E. Mössner</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001148 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001148 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9605329
   |texte=   Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9605329" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020